Login | Contact

View Catalog

Normal Hours of Operation
Tues-Fri 9:00-5:00
Sat 10:00-2:00
Closed - Sun & Mon
Closed - 12:00-1:00 Lunch
Closed all Provincial and Federal Holidays

Information

Home

About

Map

Covid-19

Plainsman Products

Clays

Low Temperature Clays

Medium Temperature Clays

High Temperature Clays

Porcelains

Other Clays

Native Clays

Casting Slips

Materials

Dry Materials

Stains

Liquids

Encapsulated Stains

Glazes

Low Fire Glazes

Medium Fire Glazes

Liquid Brights

Underglazes

Crysanthos Underglazes

Spectrum RAC Underglaze Pens

Amaco Velvet Underglazes

Equipment

Kilns

Potter's Wheels

Slab Rollers

Hand Extruders

Scales

Banding Wheels

Air Brushes

Tools

Brushes

Throwing Tools

Trimming, Turning, Cutting Tools

Wood/Bamboo Tools

Rollers/Stamps

Decorating Tools

Glazing Tools

Ribs & Scrapers

Ribbon/Wire Tools

Rasps

Knives, Needle Tools, Cutters

Tool Kits

Unclassified

Accessories

Miscellaneous Accesories

Corks/Stoppers

Cork Pads

Oil Lamp Accessories

Dispenser Pumps

Teapot Handles

Bisque Tiles

Books

Curbside Pickup Only

Due to the increase in COVID-19 cases and for the safety of customers and employees. We are accepting orders via Phone: 780-440-4791 FAX: 780-490-7590 and at larry@plainsmanclays.com.

Welcome

Click the links to the left to get information and pricing on our products. Click the "Plainsman Data Sheets" for details information on the use and Plainsman clay bodies and glazes. The blog below is intended to help you with all manner of technical issues in ceramic hobby production, these posts come every few days, so check back often.

Technical Tips Blog

Ravenscrag GR6-A glaze with Frit 3134 and Fusion F-12

As this cone 6 melt flow test demonstrates, the Fusion F-12 is giving very similar performance to the Ferro. The GR6-A recipe is just 80% Ravenscrag Slip and 20% frit. We confirmed pretty well identical results on clay tiles also. Fusion Ceramics claims that F-12 has the same chemistry of Ferro Frit 3134 and our tests are confirming similar melt behaviour.

Context: Fusion Frit F-12

Monday 14th June 2021

Cone 10R dolomite matte effect at cone 6 oxidation

Two matte glazed mugs on a speckled body

This clay, L4115J3S, a Plainsman 3D-based experimental body, fires vitreous and dense (it contains 0.2% granular manganese). These glazes are very durable and functional. The outside glaze on both is G2934W (adds 10% zircopax). In our C6DHSC firings this produces as matte a surface as is possible without having excessive staining problems. Left mug inside glaze: An 85:15 mix of G2934 matte (without zircopax) and G2926B clear glossy. Right mug inside: G2926B clear glossy ball-milled, over this body it produces a striking visual surface. These mugs look as close to cone 10R dolomite-glazed ware as we have ever seen!

Context: Dolomite Matte

Sunday 6th June 2021

Calculating a substitute for Minspar

Melt flow tests comparing the two felspars

Why do this? We did not have it in stock and customers needed to mix recipes. When the chemistries of the two feldspars are very similar substitution is often not a problem, especially when a recipe only calls for 5 or 10%. However, when a recipe calls for a significant percentage the situation becomes much trickier (in our cone 6 test recipe, "Perfect Clear", 40% Minspar is needed). Feldspars are almost a glaze in themselves, just needing silica and alumina to shift their chemistry toward 'glazedom'. In this project I calculated a mix of materials, in my Insight-live.com account, that sources the same chemistry as Minspar. I made a cone 6 GLFL test comparing the Minspar and Minspar substitute (left) and comparing the Perfect Clear glaze with each feldspar (right). As you can see, the similarity in melt flow is stunning! This is a real demonstration of just how practical and valuable glaze chemistry calculation can be.

Context: Minspar 200, Insight-Live share on how I calculated a substitute for Minspar, Create a Synthetic Feldspar in Insight-Live

Sunday 6th June 2021

Are manganese speckled clay bodies a toxicity hazard?

A mug made of manganese speckled clay

Before jumping to conclusions consider all the factors that relate. This is M340S, it is fired at cone 6. That temperature is a "sweet spot" for this effect, high enough for the particles to bleed and low enough they do not bloat the body. Such bodies contain only about 0.2% of 60-80 mesh granular manganese (compare this to many glazes that employ 5% powdered manganese as a colorant). Further, the vast majority of the manganese particles are encapsulated within the clay matrix. The tiny percentage exposed at the body surface are under the glaze. It is not the manganese particles themselves that expose at the glaze surface. Rather particle surfaces that contact the underside of the glaze bleed out into it from below, doing so as a function the glaze thickness and melt fluidity. Thus, food contact with a glass surface having isolated manganese-pigmented regions is not at all the same thing as with raw manganese metal. Consider also that the total area of manganese-stained glass on a functional surface is extremely small for this effect.

Context: Manganese Granular, G2934Y glaze on Standard #112 body at cone 6

Wednesday 2nd June 2021

Serious cracking in a crystalline-glazed P700 Grolleg porcelain. Why?

Three cracked crystal glazes porcelain vases

The cracks appear to have happened on heat-up (because they have widened). Bisque firing was done around cone 04. Issue 1: The cone 10 electric firing was up-ramped at 400F/hr to 2330F (so it whizzed pass quartz inversion on the way!). Issue 2: Wall thickness variations in the pieces, they produce temperature gradients that widen as firing proceeds. Issue 3: Abrupt contour changes and sharp corners, especially when coincident with thickness variations, provide failure points that rapid temperature changes exploit. Issue 4: This new body is more plastic than the previous Grolleg porcelain used, that was likely an enabler to making these thin wall sections even thinner. But remember, practically any piece (unless it has huge in-stresses from uneven drying) can exit a kiln crack-free if firing is done evenly and slowly enough. Results of past firings are the main guide to know what to do in future ones, this is now a "past firing". So the first obvious fix here is slower heat-up, especially around quartz inversion (1000-1100F). Second: more even wall thickness.

Context: How much feldspar should be used in a Grolleg porcelain?, Crystalline glazes, Body Cracking and Dunting During Firing

Sunday 16th May 2021

By the magic of delflocculation, all this powder will mix into that water

Two almost-full containers of clay powder, one half full of water

Casting slips require a minimum of water. Amazingly, it is possible to get 3000g of M370 powder into 1100g of water! And the fluid slurry produced, 2250cc, still fits in the container. How is this possible? That water has 11 grams of Darvan 7 deflocculant in it, it causes the clay particles to electrolytically repel each other! An awareness of “the magic” can help give you the determination to master deflocculation, the key enabler of the slip casting process. Determination? Yes, the process is fragile, must must develop the ability to “discover” the right amount of Darvan for your clay mix and water supply. And the ability to recognize what is wrong with a slurry that is not working (too much or little water, too much or little deflocculant).

Context: Deflocculants: A Detailed Overview, Understanding the Deflocculation Process in Slip Casting, Propeller Mixer, Deflocculation, Slip Casting

Sunday 9th May 2021

Two cone 10R bamboo glazes. One stains, one does not. Why?

A pottery mug has a glaze the stains easily

These mugs are Plainsman H443. The bamboo glaze on the left (A) has 3.5% rutile and 10% zircopax added to the base G2571A dolomite matte. The one on the right (B) has the same addition but in a base having slightly less MgO and slightly more KNaO. B stains badly (as can be seen from the felt marker residue that could not be removed using lacquer thinner). Why does A stain only slightly? It has an additional 4% Gerstley Borate (GB). GB is a powerful flux that develops the glass better, making the surface more silky. The differences in the recipe provide another advantage: (A) has a much lower thermal expansion and is less likely to craze.

Context: G2571A, GR10-J1, Glaze Staining

Tuesday 27th April 2021

Should you expect to vitrify terra cotta?

Hexagonal terra cotta planters in an electric kiln

These were cast by Anna Lisovskaya, they are fired at cone 03. They are supposed to fit into hexagonal welded frames, but during firing many of them warp enough to fit poorly. Why? The color differences are most obvious here. With that color associates a firing shrinkage difference, the darker ones shrink significantly more. Something less obvious: the sides against the elements receive direct radiant heat, so they shrink more, turning a perfect hexagon into an imperfect one. Terra cotta clays are volatile, that means their approach to maximum density during heat-up, accompanied by shrinkage, happens across a narrow temperature range. Accurate and even firing are paramount. In a radiant-heat electric kiln this can be very difficult. Two approaches could work here: Fire at a lower temperature, perhaps cone 04. Or, greatly slow rate-of-rise for the last 100F, perhaps over several hours.

Context: The best firing temperature for this middle range body?, How do you decide what temperature to fire this terra cotta at?

Thursday 22nd April 2021

What is the difference between fahrenheit degrees and degrees fahrenheit?

This is important to understand that when looking at our firing schedule charts. “Degrees Fahrenheit” is a measure of the temperature of something. For example, 212F is the boiling point of water (the equivalent of 100C). "Fahrenheit degrees" are the divisions on the thermometer, there are 170 of them between the freezing and boiling point of water, for example (32-212, while there are 100 celcius degrees for the same span). "Fahrenheit degrees" are thus measures of change-in-temperature, not what the temperature is. In firing schedules, that is what we are talking about, how many degrees should the kiln rise during each step.

Context: Firing Schedule

Wednesday 21st April 2021

Crawling in G2934Y zircon white glaze: There are simple fixes

A matte glazed G2934Y mug where the glaze has crawled on the upper handle join

G2934Y is a fabulous base glaze but it is not without issues. It has significant clay content in the recipe and high levels of Al2O3 in the chemistry, these make it susceptible to crawling. While it is normally fine as is, when you add certain stains to color it (especially at significant percentages) or opacify it using zircon (this has 10%), it can become more susceptible to crawling. On this mug, the glaze layer thickens at the recess of the handle join, that produces crawling during firing. Crawling can also happen on the insides of mugs, where wall and foot meet at a sharp angle. This happens, both because the glaze cracked here during drying and because the zircon stiffens the melt, making it less mobile. Rounding such contours will help. Even better, adjust the glaze recipe so it shrinks a little less on drying (by trading 5% of the raw kaolin for calcined). Adding a little CMC gum (e.g. 0.1-0.2%) will make it adhere better.

Context: G2934Y, CMC Gum, G2934Y variations for fired hardness, COE adjustment, less crawling, etc

Saturday 20th March 2021

Plainsman Pottery Supply, 9517 - 41 Ave NW, EDMONTON, AB T6E 5X7
Phone: 780-440-4791, FAX: 780-490-7591, Email: larry@plainsmanclays.com